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B I F U R C A T I O N  O F  S E L F - S I M I L A R  S O L U T I O N S  

D E S C R I B I N G  A T H E R M O C A P I L L A R Y  F L O W  OF A F L U I D  IN A T H I N  L A Y E R  

V.  A.  B a t i s h c h e v  UDC 532.526 

Thermocapillary flows of a fluid in a lamina with a rigid lower wall and a free upper surface, 
along which the temperature gradient is given in the radial direction, are investigated for 
large Marangoni numbers. Self-similar solutions which describe the azisymmetric flow regimes 
of a fluid without the circumferential velocity component are constructed numerically and 
asymptotically for  a system of Prandtl equations. It is shown that a pair of new self-similar 
flow regimes of  a fluid with rotation branches off  from the regimes obtained. The new regimes 
ere calculated numerically and asymptotically. 

1. The steady-state problem of a thermocapillary flow of an incompressible fluid in a thin horizontal 
layer bounded by a rigid wall S from below and by a free boundary F from above, on which a nonzero 
temperature gradient is given for small viscosity (v ~ 0) and thermal-diffusivity (X --~ 0) coefficients, is 
described by the system 

( v , V ) v = - p - l V p + v A v + g ,  v . V T = x A T ,  d i v v = 0  

with the boundary conditions 

p = 2vpnIIn  - a(kl + k2) + p., (r, 0, z) e F, 

2 p[n,  - = v r o ,  v -  = 0, (r, 0, z) e r ,  

T = T r ,  (r, 0,z) E F, v = T - T s = O ,  (r,O,z) e S .  

Here v = (Vr, ve, Vz) is the velocity vector, (r, 0, z) are the cylindrical coordinates, g = (0, 0 , -g t ) ,  where gt 
is the acceleration of gravity, T is the temperature, n is the unit vector of the external normal to a free 
boundary F, II is the strain-rate tensor, kl and k2 are the principal curvatures of the surface F, Ts is the wall 
temperature, p, and T r are the specified pressure and temperature on the free boundary, V r --- V - (n,  V ) n  
is the gradient along F, and a = a0 - [aT[(T - T.) is the surface-tension coefficient which linearly depends 
on the temperature, where a0, CrT, and T, are known constants. The axial-symmetry conditions mean that v, 
p, and T do not depend on the circumferential coordinate 0. 

Upon irregular heating of the free boundary F, surface tangent stresses arise on this boundary due to 
the thermocapillary Marangoni effect. These stresses lead to the formation of nonlinear boundary layers as 
v --~ 0 and X --+ 0. 

We consider a thermocapillary flow of a fluid in a lamina whose thickness is of the order of the thickness 
of the boundary layer O(e). We note that the flows induced by the Marangoni effect in the layers of thickness 
O(~) which are limited by rigid and free boundaries were studied by the author in [1], and Anderson et al. 
[2] studied the flows in the layers between two rigid walls with the use of the Prandtl equations. Pukhnachev 
[3] constructed unsteady-state self-similar solutions which describe the flows of a fluid in the boundary layer 
near the free boundary. 
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We consider a thermocapillary flow of a fluid in a thin viscous layer of thickness O(e) with the use 
a system of Prandtl equations [1]. We write this system in cylindrical coordinates, taking into account that 
v ,p ,  and T do not depend on the circumferential coordinate 0: 

02Vr 1 Op t Ovo Ovo v~vo 02vo Ov~ O w  v~ = v - -  ~ 
v~--~- r + vz Oz r Oz 2 p Or v~ Or + vz Oz + - -  - v -  ' r O z  2 ' (1.1) 

Op' O(rv~) O(rv~) OT OT c32T 
O z  = o,  0- -7-  + o----2- = o,  ~'r O-7 + v z O z  = x o z 2  " 

Here p' = p +  pgtz. For system (1.1), the following boundary conditions at the rigid wall z = 0 and at the free 
boundary z = ( are used in a boundary-layer approximation: 

Or,  O,r Ovo 
pv  0--2 - Or '  Oz = O, v .  n = 0 (z = O ,  

OVn 
p' = pgtz  -- a(k l  + k2) + 2 v p - ~ n p . ,  T = Tr (z = r (1.2) 

v ~ = v o = v z = O ,  T = T s  ( z = O ) .  

The boundary conditions for z = ~ are the dynamic conditions for the tangent and normal stresses 
and the kinematic condition on the free boundary F. We note that the tangent stresses on r are caused by 
the Marangoni effect. 

2. We construct a self-similar solution of system (1.1), (1.2) provided that  the temperature on the free 
boundary depends only on the radial coordinate according to a quadratic law Tr = 0.5Ar r2. In this case, 
the tangent stresses on F act only in the radial direction and are absent in the circumferential direction. We 
present the self-similar solution of system (1.1) 

Vr = rOt (~)vhL  -2,  vo = rg (~)vhL  -2,  Vz = 2 0 ( ~ ) v h 2 L  -1,  

Op = pqrv2L_2h2,  ~ = 1 - z .  T = 0 .br2ArTl (~) ,  0"-; H 

Here H is the thickness of the layer, L = (pv2Ar l [aT[ -1 )  1/3 is the scale of length, and h = H / L  is the 
dimensionless parameter. The boundary conditions on the free boundary are fulfilled if ( = H = const and 
p. depends on the coordinate r according to a quadratic law. We note that the free boundary is rectilinear in 
this approximation, and the layer has a constant thickness of the order v 2/3. Obviously, we have e = O(v2D).  

The self-similar solution obtained describes the thermocapillary flow of a fluid only near the axis of 
symmetry Oz and is not extended to the case of large values of the radial coordinate r. 

The functions 0(~), g(~), and TI(() and the parameter q are determined from the boundary-value 
problem 

0'" = A(O '2 - 20r  - g2 + q), g" = 2A(O'g -- Og'), q' = O, 

TI' = 2,\Pr(O'T1 - OT~), 0(0) = O, 0"(0) = 1, (2.1) 

g'(0) = 0, 7'1(0) = 1, 0(1) = (I)'(1) = g(1) = TI(1) = 0. 

It is assumed that A = h 3 is the specific parameter, Pr is the Prandtl number, and the tangent stresses on 
the free boundary are directed toward the axis of symmetry. 

The solution of system (2.1), which describes fluid flow with a zero circumferential velocity component, 
is denoted by 00(~, A), q0(~), and go - 0. For finite ~, this solution is obtained numerically. Curve 1 in Fig. 1 
refers to the parameter p0 = - q o  h2 versus the dimensionless thickness of the layer h. For small A, expanding 
the function 00((, A) into a power series of the variable ( and retaining three terms, we find the following 
asymptotic values (,k ~ 0): 

00 = --~(~ - 1)2/4 + o(1), qo = --1.5/)~ + o(1). (2.2) 
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For h = 0.5, the first three significant figures of the numerical and asymptotic values of q0 coincide. For large 
A, the solution is constructed by the method of stitching the asymptotic expansions: 

O0 = 0.5~(~ - 1) + ,~-l/2ga(r]) -t- O(~-1), q0 ~-- - 1 / 4  ~t. O()~-1/2) (A ~ oo). 

Here rl = (1 - ~ ) A  -1/2, and the function Ha(r/) is defined from the boundary-value problem 

m 2 . _ Hal2 + o + t ga = gaga ~ga Ha, g a ( 0 ) = g ' o ( 0 ) - 0 . 5 = s 1 6 2  

A numerical calculation yields g~(0) = 0.5478. 
3. We show that,  for a certain A, two symmetric solutions with a nonzero circumferential velocity 

component v0 ~ 0 bifurcates from the solution (I)0, q0- To do this, we first consider the eigenvalue problem 
obtained by linearizing problem (2.1) near the solution O0, q0: 

f~" = ~(2O~fl _ 2 ( ~ o f ~ t  _ 200f l t t  q_ el), glH=2,~(~t0gl-O0g~) , q~=0, (3.1) 
f l (0)  = f~'(0) = g~(0) = 0, f1(1) = f~(1) = gl(1) = 0. 

The resulting boundary-value problem (with allowance for the corresponding problem for the function 
7'1) was investigated numerically for finite values of ~ and asymptotically for small and large )~. The calculations 
showed that,  for finite values of )~, there is only one simple eigenvalue of A0 = 11.222 to which corresponds 
the eigenfunction gl = ~:(~), f l  = 0, ql = 0, and T1 = 0 with the normalization condition ~o(0) = 1. On 
the segment [0, 1], with increase in ~, the positive function ~2(~) decreases monotonically from unity to zero. 
A study of problem (3.1) by the method of stitching the asymptotic expansions showed that the eigenvalues 
are absent as ~ ~ oo. For small ,X, a study by means of formulas (2.2) showed that problem (3.1) has no 
eigenvalues either. This problem has only one simple eigenvalue for all ~ E (0, oo). 

We pass to the derivation of a bifurcation equation for the boundary-value problem (2.1) with the use 
of the method of [4] and by representing the solution in the form 

(I)(~, A) = r A) + af(~ ,  A,(~), g(~, A) = aG(~, A, c0, q = q0(A) + (~Q(A,a), (3.2) 

where f ,  G, and Q are the desired functions and (~ is a parameter chosen in such a way that the condition 
G = 1 is satisfied for ~ = 0. We introduce the linear operators 

L = D 3 - A(2(I)~D- 2(I)0D 2 - 2 ~ I ) ,  

K = D  2 - 2 A ( O ~ I - ( I ) 0 D ) ,  L 0 = L ,  K 0 = K  (A=A0) .  

Here D = d/d~ and I is the unit operator. 
The functions f ,  G, and Q are determined from the nonlinear boundary-value problem 

L l ( f  ,g,  Q) = L f - )~Q - Ac~(f '2 - 2 f  f "  - G 2) = 0, 

K l ( f ,  G) = K G  - 2 ) , a ( f ' V  - f G ' )  = 0, Q' = 0, (3.3) 

f (0)  = f"(0)  = G'(0) = 0, f(1) = f '(1) = G(1) = 0. 

We note that, for A = A0 and c~ = 0, system (3.3) has the solution f = 0, G = ~(~), and Q = 0, since 
it coincides with the eigenvalue problem (3.1). 

We now consider the Cauchy problem 

L1 (f ,  G, Q) = o, K1 (f,  G) = 0, Qt = 0; (3.4) 

f = 0 ,  f ' = p l ,  f " = 0 ,  G = I ,  a t = 0 ,  Q = p 2  ( ~ = 0 ) .  (3.5) 

The parameters pl and p2 are not yet known and are found when the boundary conditions in (3.3) on 
the rigid wall are satisfied for ~ = 1. 

We note that, for )~ = A0 and a = 0, problem (3.4), (3.5) has the solution f = 0, G = qa(~), Q = 0, and 
pl = p2 = 0. We now study the solution of this problem for values of (A, a) close to (~0, 0). Obviously, this 
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solution is the solution of the boundary-value problem (3.3) if and only if the functions f ,  G, and Q satisfy 
the boundary conditions for ~ = h 

f (1 , ) t ,a ,  pl,p2) = O, f '(1,)t,c~,pl,p2) = O, G(1,)t,a, pl ,p2) = O. (3.6) 

The parameters pl  and p2 are uniquely determined from the first two equations of system (3.6). This 
is established by means of the known theorem of implicit functions [5]. At the point )t = )t0 and a = 0, the 
calculation gave a nonzero functional determinant  D(f ,  f ' ) /D(p l ,  p2). In this calculation of the determinant,  
the Cauchy problems for the derivatives of the functions f and Of/O~ with respect to the parameters pl  and 
p2 were solved numerically. 

Having determined the parameters pl  and p2 from the first two equations of system (3.6) and 
substituting them into the third equations, we derive the bifurcation equation 

b()t, a) -- G(1, )t, a,  pl()t, ~),p2()t, or)) = 0. (3.7) 

Using the method  of [4], we expand the function b()~, a)  into the Taylor finite series in the neighborhood 
of the point )t = )t0 and a = 0: 

b()t, a) = b()t0, 0) + ()t - )t0)ba + aba + 0.ha2bao + . . .  = 0. (3.8) 

Here b~,, bo, and boa are the derivatives of the function b()t, a) ,  with respect to the  parameters )t and a which 
were calculated at the point )t = )t0, oL = 0. 

We calculate the coefficients of the series (3.8). We show that  b()t0, 0) = 0. To do this, we pass to 
the limit for )t --~ )t0 and a ~ 0 in (3.7) and to the Cauchy problem (3.4), (3.5) and take into account the 
conditions f = 0, fl  = 0, and G = 0 for ~ = 1. Analysis of the problems obtained shows that  G = r and 
pl = p2 = 0 for a = 0 and )t = A0, and, hence, b()t0,0) = ~(1) = 0. 

The  numerical value of the coefficient bx in (3.8) is found using the relation 

OG OG Opl OG Op2 
b)~ = --~ + Opl O)t + Op2 0)t ()t = )to, a = 0). 

It is noteworthy that  OG/Opl = 0 and OG/Op2 = 0 ()t = )to and a = 0). This is found by studying 
the Cauchy problems obtained "by differentiating problem (3.4), (3.5) with respect to the parameters pl  and 
p2. Differentiating (3.4) and (3.5) with respect to )t and letting )t ~ )to and a --+ 0, we derive the following 
Cauchy problem for G)~ = OG/O)t: 

goG~ = 2) t0(r  - ~0AG') + 2 ( ~ :  - ~0~'),  G~ = 0, G~ = 0 (~ = 0). 

The function r is determined from the boundary-value problem 

Lor - )toqo~ = r _ 2r162 + qo, q~ = O, 

~ 0 ~ = 0 ,  r  ( ~ = 0 ) ,  r  ( ~ =  1). 

A numerical calculation yields q0~ = 0.0108, r  = -0.0024, and G~(1) = -0.1629. Thus, we have 
b~ = G~(1, )to, 0) = -0.1629. 

We note that  ba = 0 in relation (3.8). This is established when the Cauchy problems are studied for 
the derivatives OG/Oa, OG/Op1, and OG/Op2. 

The coefficient ban in (3.8) is found taking into account that  boo = Gas for )~ = )to and a = 0. The 
function Gaa is found by numerically solving the Cauchy problem 

KoGa,~ = 4 ) t o ( f ~ o - f a ~ ' )  ()t--A0, a - - 0 ) ,  G a a = 0 ,  C ' ~ = 0  ( ~ = 0 ) .  

The boundary-value problem for fa  is obtained by replacing the functions f l  and ql by fo and Qa + %o 2, 
respectively, in (3.1). A numerical calculation gives Gas = 6.6987 (~ = 1, )t = A0, and a = 0). 

Using Newton's diagram [5], one can find the parameter a from the bifurcation equation (3.8): 

= - + . . .  ( ) t  ) to ) .  
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As a result, two symmetrical solutions, which differ from each other only by the direction of the circumferential 
velocity component and exist for all h > ho = 2.2388 ($ > A0), bifurcate from the solution ~0 and q0 at the 
point A = A0. 

The asymptotic behavior of the bifurcating solutions is constructed as A --+ A0. Introducing the small 
parameter el = (A - A0) U2, we present the solution of problem (2.1) as the series 

r = r +e lF1 + s12(q~02 +F2)  + . . . ,  
(3.9) 

g = ~,a, + da2  + ~c3 + . . . ,  q = qoo + ~IQI + d(qo2 + r + . . . .  

The representation of the functions ~0(~, A) and q0(A) is used here in the form of series with respect to the 
degrees of the parameter el; the coefficients of these series are found from the relations ~00 = ~0(~, A0), 
q00 = q0(Ao), ~02 = 0r and qo2 = Oqo/OA (A = A0). 

The series (3.9) are substituted into system (2.1) and the coefficients at el ,  e~,--- are equated to zero. 
For F1, G1, and Q1, an eigenvalue problem is derived. This problem is obtained from (3.1) by replacing the 
functions fl, gl, and ql by F1, G1, and Q1, respectively. The latter problem is solved in the form F1 = Q1 = 0 
and G1 = cl~v(~), where ~ is the normalized eigenfunction determined above, and cl is the constant determined 
from the solvability conditions for the boundary-value problem in the third approximation. Now we derive 
boundary-value problems for the functions F2, G2, and Q2: 

LoF~ = ~0(Q~ - G~), KoG2 = 0, Q~ = 0, 

F2=F~'=G'2=O ( ~ = 0 ) ,  F2=F~=G2=O ( ~ = 1 ) .  

A numerical calculation yields Q2 = 0.7183c 2 and F~(0) = 0.3629c 2. For G2, we obtain G2 = c2(p, where 
the constant c2 is determined by studying the solvability conditions for the boundary-value problems in the 
fourth approximation. Writing the boundary-value problem for the function G3 and satisfying its solvability 
condition, we find the constant c1: 

1 
~1 ~ ! C12 -- --I1/I2, ]'2 )~0 ~ , ( F ~  - = F ~  )dr 

o 

1 

I1 = f ~*(r - r + Ao@~2~ - A0@02~2') d~. 
0 

Here F2 = F2c~ 2, and ~,  is determined from the boundary-value problem K , ~ ,  = 0, ~',(0) = ~,(1) = 0, where 
K,  = D 2 - 2A0(2r + r is the operator conjugate to K0. A numerical calculation yields c 2 = 0.0486. 
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For finite values of the difference A - A0 (for all A > A0), the bifurcated solutions are constructed by 
numerically integrating system (2.1). We note that these solutions show only different signs of the function 
g(~, ~). This means that one bifurcated solution is obtained from another by changing the direction of the 
circumferential velocity component v0, whereas v0 = 0 for the "basic" solution. Curve 2 in Fig. 1 shows 
the dependence of p0 = -qh  ~ on the layer thickness h for a bifurcating solution. Curves 1 and 2 in Fig. 2 
show, respectively, the functions g(~) and O'(~) for bifurcating solutions, and curve 3 refers to the diagram 
O'(~) for the "basic" solution (g = 0) when A -- 27, which corresponds to h = 3. Evidently, the radial 
velocity component changes the direction inside the layer once, whereas, monotonically decreasing from the 
free boundary to the rigid wall, the circumferential component preserves its direction. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96- 
0101103). 
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